quarta-feira, 25 de novembro de 2009



Fatorial


Fatorial é uma expressão que tem por função determinar um número sucessor com ajuda do anterior ou anteriores. Este procedimento é chamado de recursividade.

A notação que conhecemos n!(fatorial de n ), foi introduzida por Christian Kramp (Colônia,1808) em seu livro "Elements d'arithmétique universelle"


Observação: O zero não entra nesta definição, pois se multiplicarmos todo o produto de n até 1 por zero teremos zero como resultado. Logo o fatorial de n pode ser definido como:

Para todo n>=2, n!= n(n-1)(n-2)...1
Define-se ainda que:

Para n=0 temos que n!=1
Para n=1 temos que n!=1


Exemplo I:
a)
0! = 1
1! = 1
2! = 2.1=2
3! = 3.2.1=6
4! = 4.3.2.1=24
5! = 5.4.3.2.1=120
.
.
.
n!= n(n-1)(n-2)...1

b) Também é importante destacar, que o desenvolvimento de um fatorial pode ser representado utilizando um outro fatorial menor. Nesse caso, trucamos (quebramos) o desenvolvimento de n! em um fator qualquer e utilizamos novamente o símbolo”!”.

Exemplo II:

a) 3!=3.2.1=6 desenvolvendo todo o produto sem truncar nenhum fator.
3!=3.2! = 6, pois foi truncado em 2!, e como 2!=2.1 então temos que 3.2!=6.
Este segundo método facilita quando temos valores muito grandes e conhecemos os valores dos fatoriais menores.

b)
4!=4.3.2!
4!=4.3!
10!=10.9.8.7.6!
15!=15.14.13.12.11.10!

Exemplos III:



Exemplos IV:



Exemplos V:



Exemplos VI:
Agora vamos trabalhar com letras.

Primeiro vamos verificar qual dos fatoriais é o maior. Como eu faço para descobrir isto?

Vamos dar valores a variável k.

Exemplo:

Se k=1 , temos que:

(k+1)!= (1+1)!=2!=2, e do mesmo modo.
Se k=1 temos que:

(k-1)!=(1-1)!=0!=1, (pela definição). Logo como 2>1, então o maior fatorial é (k+1)!.
Como a definição de fatorial nos diz que o desenvolvimento de um fatorial vai de n até 1, significa que temos que desenvolver o fatorial de k+1 até atingir o fator (k-1)!.
Ou seja, vamos truncar k+1 em k-1, para poder simplificar nosso problema.

Definição - n!=n(n-1)!
Logo (k+1)!= (k+1).k!

Colocamos k+1 no lugar do n da definição.
Colocamos (k+1) no lugar de (n-1)! Da definição.
(k+1-1)!=k

Mas ainda não chegamos ao fator (k-1)! Para truncar.
Bem! Qual o fatorial de k, ou k!?
Voltamos mais uma vez a definição.

n!=n(n-1)! Logo colocando k no lugar de n, ou seja, fazendo k=n na definição, temos.
K!=k(k-1)!.

Exercício Resolvido

1)Resolva: 9!
Resolução:
9! = 9x8x7x6x5x4x3x2x1= 362.880

2)Simplifique: 39!

Resolução:
39! = 39x38!

3) Resolva:
Resolução:


Solução: S = {4}, pois não existe fatorial de número negativo.
(Caroline Pereira e Renan Estrada)




Fatorial
ANALISE COMBINATÓRIA E PRINCIPIO DA CONTAGEM

1 - Introdução
Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento da Análise Combinatória, parte da Matemática que estuda os métodos de contagem. Esses estudos foram iniciados já no século XVI, pelo matemático italiano Niccollo Fontana (1500-1557), conhecido como Tartaglia. Depois vieram os franceses Pierre de Fermat (1601-1665) e Blaise Pascal (1623-1662).
A Análise Combinatória visa desenvolver métodos que permitam contar - de uma forma indireta - o número de elementos de um conjunto, estando esses elementos agrupados sob certas condições.
2 - Fatorial
Seja n um número inteiro não negativo. Definimos o fatorial de n (indicado pelo símbolo n! ) como sendo:

n! = n .(n-1) . (n-2) . ... .4.3.2.1 para n ³ 2.

Para n = 0 , teremos : 0! = 1.
Para n = 1 , teremos : 1! = 1
Exemplos:

a) 6! = 6.5.4.3.2.1 = 720
b) 4! = 4.3.2.1 = 24
c) observe que 6! = 6.5.4!
d) 10! = 10.9.8.7.6.5.4.3.2.1
e) 10! = 10.9.8.7.6.5!
f ) 10! = 10.9.8!
3 - Princípio fundamental da contagem - PFC
Se determinado acontecimento ocorre em n etapas diferentes, e se a primeira etapa pode ocorrer de k1 maneiras diferentes, a segunda de k2 maneiras diferentes, e assim sucessivamente, então o número total T de maneiras de ocorrer o acontecimento é dado por:
T = k1. k2 . k3 . ... . kn
Exemplo:

O DETRAN decidiu que as placas dos veículos do Brasil serão codificadas usando-se 3 letras do alfabeto e 4 algarismos. Qual o número máximo de veículos que poderá ser licenciado?

Solução:

Usando o raciocínio anterior, imaginemos uma placa genérica do tipo PWR-USTZ.
Como o alfabeto possui 26 letras e nosso sistema numérico possui 10 algarismos (de 0 a 9), podemos concluir que: para a 1ª posição, temos 26 alternativas, e como pode haver repetição, para a 2ª, e 3ª também teremos 26 alternativas. Com relação aos algarismos, concluímos facilmente que temos 10 alternativas para cada um dos 4 lugares. Podemos então afirmar que o número total de veículos que podem ser licenciados será igual a: 26.26.26.10.10.10.10 que resulta em 175.760.000. Observe que se no país existissem 175.760.001 veículos, o sistema de códigos de emplacamento teria que ser modificado, já que não existiriam números suficientes para codificar todos os veículos. Perceberam?
4 - Permutações simples
4.1 - Permutações simples de n elementos distintos são os agrupamentos formados com todos os n elementos e que diferem uns dos outros pela ordem de seus elementos.

Exemplo: com os elementos A,B,C são possíveis as seguintes permutações: ABC, ACB, BAC, BCA, CAB e CBA.
4.2 - O número total de permutações simples de n elementos distintos é dado por n!, isto é
Pn = n! onde n! = n(n-1)(n-2)... .1 .

Exemplos:

a) P6 = 6! = 6.5.4.3.2.1 = 720
b) Calcule o número de formas distintas de 5 pessoas ocuparem os lugares de um banco retangular de cinco lugares.
P5 = 5! = 5.4.3.2.1 = 120

4.3 - Denomina-se ANAGRAMA o agrupamento formado pelas letras de uma palavra, que podem ter ou não significado na linguagem comum.

Exemplo:

Os possíveis anagramas da palavra REI são:
REI, RIE, ERI, EIR, IRE e IER.
5 - Permutações com elementos repetidos
Se entre os n elementos de um conjunto, existem a elementos repetidos, b elementos repetidos, c elementos repetidos e assim sucessivamente , o número total de permutações que podemos formar é dado por:

Exemplo:
Determine o número de anagramas da palavra MATEMÁTICA.(não considere o acento)

Solução:
Temos 10 elementos, com repetição. Observe que a letra M está repetida duas vezes, a letra A três , a letra T, duas vezes. Na fórmula anterior, teremos: n=10, a=2, b=3 e c=2. Sendo k o número procurado, podemos escrever:
k= 10! / (2!.3!.2!) = 151200
Resposta: 151200 anagramas.
6 - Arranjos simples
6.1 - Dado um conjunto com n elementos , chama-se arranjo simples de taxa k , a todo agrupamento de k elementos distintos dispostos numa certa ordem. Dois arranjos diferem entre si, pela ordem de colocação dos elementos. Assim, no conjunto E = {a,b,c}, teremos:
a) arranjos de taxa 2: ab, ac, bc, ba, ca, cb.
b) arranjos de taxa 3: abc, acb, bac, bca, cab, cba.
6.2 - Representando o número total de arranjos de n elementos tomados k a k (taxa k) por An,k , teremos a seguinte fórmula:

Obs : é fácil perceber que An,n = n! = Pn . (Verifique)
Exemplo:

Um cofre possui um disco marcado com os dígitos 0,1,2,...,9. O segredo do cofre é marcado por uma seqüência de 3 dígitos distintos. Se uma pessoa tentar abrir o cofre, quantas tentativas deverá fazer(no máximo) para conseguir abri-lo?

Solução:

As seqüências serão do tipo xyz. Para a primeira posição teremos 10 alternativas, para a segunda, 9 e para a terceira, 8. Podemos aplicar a fórmula de arranjos, mas pelo princípio fundamental de contagem, chegaremos ao mesmo resultado:
10.9.8 = 720.
Observe que 720 = A10,3
7 - Combinações simples
7.1 - Denominamos combinações simples de n elementos distintos tomados k a k (taxa k) aos subconjuntos formados por k elementos distintos escolhidos entre os n elementos dados. Observe que duas combinações são diferentes quando possuem elementos distintos, não importando a ordem em que os elementos são colocados.

Exemplo:

No conjunto E= {a,b.c,d} podemos considerar:
a) combinações de taxa 2: ab, ac, ad,bc,bd, cd.
b) combinações de taxa 3: abc, abd,acd,bcd.
c) combinações de taxa 4: abcd.
7.2 - Representando por Cn,k o número total de combinações de n elementos tomados k a k (taxa k) , temos a seguinte fórmula:


Nota: o número acima é também conhecido como Número binomial e indicado por:


Exemplo:

Uma prova consta de 15 questões das quais o aluno deve resolver 10. De quantas formas ele poderá escolher as 10 questões?

Solução:

Observe que a ordem das questões não muda o teste. Logo, podemos concluir que trata-se de um problema de combinação de 15 elementos com taxa 10.

Aplicando simplesmente a fórmula chegaremos a:
C15,10 = 15! / [(15-10)! . 10!] = 15! / (5! . 10!) = 15.14.13.12.11.10! / 5.4.3.2.1.10! = 3003

Agora que você viu o resumo da teoria, tente resolver os 3 problemas seguintes:
01 - Um coquetel é preparado com duas ou mais bebidas distintas. Se existem 7 bebidas distintas, quantos coquetéis diferentes podem ser preparados?
Resp: 120
02 - Sobre uma circunferência são marcados 9 pontos distintos. Quantos triângulos podem ser construídos com vértices nos 9 pontos marcados?
Resp: 84
03 - Uma família com 5 pessoas possui um automóvel de 5 lugares. Sabendo que somente 2 pessoas sabem dirigir, de quantos modos poderão se acomodar para uma viagem?
Resp: 48
Exercício resolvido:

Um salão tem 6 portas. De quantos modos distintos esse salão pode estar aberto?

Solução:

Para a primeira porta temos duas opções: aberta ou fechada
Para a segunda porta temos também, duas opções, e assim sucessivamente.
Para as seis portas, teremos então, pelo Princípio Fundamental da Contagem - PFC:
N = 2.2.2.2.2.2 = 64
Lembrando que uma dessas opções corresponde a todas as duas portas fechadas, teremos então que o número procurado é igual a 64 - 1 = 63.

Resposta: o salão pode estar aberto de 63 modos possíveis.



Introdução à Análise Combinatória
Análise Combinatória é um conjunto de procedimentos que possibilita a construção de grupos diferentes formados por um número finito de elementos de um conjunto sob certas circunstâncias.
Na maior parte das vezes, tomaremos conjuntos Z com m elementos e os grupos formados com elementos de Z terão p elementos, isto é, p será a taxa do agrupamento, com pArranjos, Permutações ou Combinações, são os três tipos principais de agrupamentos, sendo que eles podem ser simples, com repetição ou circulares. Apresentaremos alguns detalhes de tais agrupamentos.
Observação: É comum encontrarmos na literatura termos como: arranjar, combinar ou permutar, mas todo o cuidado é pouco com os mesmos, que às vezes são utilizados em concursos em uma forma dúbia!

Arranjos
São agrupamentos formados com p elementos, (pArranjo simples: Não ocorre a repetição de qualquer elemento em cada grupo de p elementos.
Fórmula: As(m,p) = m!/(m-p)!
Cálculo para o exemplo: As(4,2) = 4!/2!=24/2=12.
Exemplo: Seja Z={A,B,C,D}, m=4 e p=2. Os arranjos simples desses 4 elementos tomados 2 a 2 são 12 grupos que não podem ter a repetição de qualquer elemento mas que podem aparecer na ordem trocada. Todos os agrupamentos estão no conjunto:
As={AB,AC,AD,BA,BC,BD,CA,CB,CD,DA,DB,DC}
Arranjo com repetição: Todos os elementos podem aparecer repetidos em cada grupo de p elementos.
Fórmula: Ar(m,p) = mp.
Cálculo para o exemplo: Ar(4,2) = 42=16.
Exemplo: Seja C={A,B,C,D}, m=4 e p=2. Os arranjos com repetição desses 4 elementos tomados 2 a 2 são 16 grupos que onde aparecem elementos repetidos em cada grupo. Todos os agrupamentos estão no conjunto:
Ar={AA,AB,AC,AD,BA,BB,BC,BD,CA,CB,CC,CD,DA,DB,DC,DD}
Arranjo condicional: Todos os elementos aparecem em cada grupo de p elementos, mas existe uma condição que deve ser satisfeita acerca de alguns elementos.
Fórmula: N=A(m1,p1).A(m-m1,p-p1)
Cálculo para o exemplo: N=A(3,2).A(7-3,4-2)=A(3,2).A(4,2)=6×12=72.
Exemplo: Quantos arranjos com 4 elementos do conjunto {A,B,C,D,E,F,G}, começam com duas letras escolhidas no subconjunto {A,B,C}?
Aqui temos um total de m=7 letras, a taxa é p=4, o subconjunto escolhido tem m1=3 elementos e a taxa que este subconjunto será formado é p1=2. Com as letras A,B e C, tomadas 2 a 2, temos 6 grupos que estão no conjunto:
PABC = {AB,BA,AC,CA,BC,CB}
Com as letras D,E,F e G tomadas 2 a 2, temos 12 grupos que estão no conjunto:
PDEFG = {DE,DF,DG,ED,EF,EG,FD,FE,FG,GD,GE,GF}
Usando a regra do produto, teremos 72 possibilidades obtidas pela junção de um elemento do conjunto PABC com um elemento do conjunto PDEFG. Um típico arranjo para esta situação é CAFG.

Permutações
Quando formamos agrupamentos com m elementos, de forma que os m elementos sejam distintos entre sí pela ordem. As permutações podem ser simples, com repetição ou circulares.
Permutação simples: São agrupamentos com todos os m elementos distintos.
Fórmula: Ps(m) = m!.
Cálculo para o exemplo: Ps(3) = 3!=6.
Exemplo: Seja C={A,B,C} e m=3. As permutações simples desses 3 elementos são 6 agrupamentos que não podem ter a repetição de qualquer elemento em cada grupo mas podem aparecer na ordem trocada. Todos os agrupamentos estão no conjunto:
Ps={ABC,ACB,BAC,BCA,CAB,CBA}
Permutação com repetição: Dentre os m elementos do conjunto C={x1,x2,x3,...,xn}, faremos a suposição que existem m1 iguais a x1, m2 iguais a x2, m3 iguais a x3, ... , mn iguais a xn, de modo que m1+m2+m3+...+mn=m.
Fórmula: Se m=m1+m2+m3+...+mn, então
Pr(m)=C(m,m1).C(m-m1,m2).C(m-m1-m2,m3) ... C(mn,mn)
Anagrama: Um anagrama é uma (outra) palavra construída com as mesmas letras da palavra original trocadas de posição.
Cálculo para o exemplo: m1=4, m2=2, m3=1, m4=1 e m=6, logo: Pr(6)=C(6,4).C(6-4,2).C(6-4-1,1)=C(6,4).C(2,2).C(1,1)=15.
Exemplo: Quantos anagramas podemos formar com as 6 letras da palavra ARARAT. A letra A ocorre 3 vezes, a letra R ocorre 2 vezes e a letra T ocorre 1 vez. As permutações com repetição desses 3 elementos do conjunto C={A,R,T} em agrupamentos de 6 elementos são 15 grupos que contêm a repetição de todos os elementos de C aparecendo também na ordem trocada. Todos os agrupamentos estão no conjunto:
Pr={AAARRT,AAATRR,AAARTR,AARRTA,AARTTA,
AATRRA,AARRTA,ARAART,ARARAT,ARARTA,
ARAATR,ARAART,ARAATR,ATAARA,ATARAR}
Permutação circular: Situação que ocorre quando temos grupos com m elementos distintos formando uma circunferência de círculo.
Fórmula: Pc(m)=(m-1)!
Cálculo para o exemplo: P(4)=3!=6
Exemplo: Seja um conjunto com 4 pessoas K={A,B,C,D}. De quantos modos distintos estas pessoas poderão sentar-se junto a uma mesa circular (pode ser retangular) para realizar o jantar sem que haja repetição das posições?
Se considerássemos todas as permutações simples possíveis com estas 4 pessoas, teriamos 24 grupos, apresentados no conjunto:
Pc={ABCD,ABDC,ACBD,ACDB,ADBC,ADCB,BACD,BADC,
BCAD,BCDA,BDAC,BDCA,CABD,CADB,CBAD,CBDA,
CDAB,CDBA, DABC,DACB,DBAC,DBCA,DCAB,DCBA}
Acontece que junto a uma mesa "circular" temos que:
ABCD=BCDA=CDAB=DABC
ABDC=BDCA=DCAB=CABD
ACBD=CBDA=BDAC=DACB
ACDB=CDBA=DBAC=BACD
ADBC=DBCA=BCAD=CADB
ADCB=DCBA=CBAD=BADC
Existem somente 6 grupos distintos, dados por:
Pc={ABCD,ABDC,ACBD,ACDB,ADBC,ADCB}

Combinações
Quando formamos agrupamentos com p elementos, (pCombinação simples: Não ocorre a repetição de qualquer elemento em cada grupo de p elementos.
Fórmula: C(m,p) = m!/[(m-p)! p!]
Cálculo para o exemplo: C(4,2)=4!/[2!2!]=24/4=6
Exemplo: Seja C={A,B,C,D}, m=4 e p=2. As combinações simples desses 4 elementos tomados 2 a 2 são 6 grupos que não podem ter a repetição de qualquer elemento nem podem aparecer na ordem trocada. Todos os agrupamentos estão no conjunto:
Cs={AB,AC,AD,BC,BD,CD}
Combinação com repetição: Todos os elementos podem aparecer repetidos em cada grupo até p vezes.
Fórmula: Cr(m,p)=C(m+p-1,p)
Cálculo para o exemplo: Cr(4,2)=C(4+2-1,2)=C(5,2)=5!/[2!3!]=10
Exemplo: Seja C={A,B,C,D}, m=4 e p=2. As combinações com repetição desses 4 elementos tomados 2 a 2 são 10 grupos que têm todas as repetições possíveis de elementos em grupos de 2 elementos não podendo aparecer o mesmo grupo com a ordem trocada. De um modo geral neste caso, todos os agrupamentos com 2 elementos formam um conjunto com 16 elementos:
Cr={AA,AB,AC,AD,BA,BB,BC,BD,CA,CB,CC,CD,DA,DB,DC,DD}
mas para obter as combinações com repetição, deveremos excluir deste conjunto os 6 grupos que já apareceram antes, pois AB=BA, AC=CA, AD=DA, BC=CB, BD=DB e CD=DC, assim as combinações com repetição dos elementos de C tomados 2 a 2, são:
Cr={AA,AB,AC,AD,BB,BC,BD,CC,CD,DD}

Regras gerais sobre a Análise Combinatória
Problemas de Análise Combinatória normalmente são muito difíceis mas eles podem ser resolvidos através de duas regras básicas: a regra da soma e a regra do produto.
Regra da soma: A regra da soma nos diz que se um elemento pode ser escolhido de m formas e um outro elemento pode ser escolhido de n formas, então a escolha de um ou outro elemento se realizará de m+n formas, desde que tais escolhas sejam independentes, isto é, nenhuma das escolhas de um elemento pode coincidir com uma escolha do outro.
Regra do Produto: A regra do produto diz que se um elemento H pode ser escolhido de m formas diferentes e se depois de cada uma dessas escolhas, um outro elemento M pode ser escolhido de n formas diferentes, a escolha do par (H,M) nesta ordem poderá ser realizada de m.n formas.
Exemplo: Consideremos duas retas paralelas ou concorrentes sem que os pontos sob análise estejam em ambas, sendo que a primeira r contem m pontos distintos marcados por r1, r2, r3, ..., rm e a segunda s contem n outros pontos distintos marcados por s1, s2, s3, ..., sn. De quantas maneiras podemos traçar segmentos de retas com uma extremidade numa reta e a outra extremidade na outra reta?

É fácil ver isto ligando r1 a todos os pontos de s e assim teremos n segmentos, depois ligando r2 a todos os pontos de s e assim teremos n segmentos, e continuamos até o último ponto para obter também n segmentos. Como existem m pontos em r e n pontos em s, teremos m.n segmentos possíveis.

Número de Arranjos simples
Seja C um conjunto com m elementos. De quantas maneiras diferentes poderemos escolher p elementos (pc1, c2, c3, c4, c5, ..., cm-2, cm-1, cm
Cada vez que um elemento for retirado, indicaremos esta operação com a mudança da cor do elemento para a cor vermelha.
Para escolher o primeiro elemento do conjunto C que possui m elementos, temos m possibilidades. Vamos supor que a escolha tenha caído sobre o m-ésimo elemento de C.
c1, c2, c3, c4, c5, ..., cm-2, cm-1, cm
Para escolher o segundo elemento, devemos observar o que sobrou no conjunto e constatamos que agora existem apenas m-1 elementos. Suponhamos que tenha sido retirado o último elemento dentre os que sobraram no conjunto C. O elemento retirado na segunda fase é o (m-1)-ésimo.
c1, c2, c3, c4, c5, ..., cm-2, cm-1, cm
Após a segunda retirada, sobraram m-2 possibilidades para a próxima retirada. Do que sobrou, se retirarmos o terceiro elemento como sendo o de ordem (m-2), teremos algo que pode ser visualizado como:
c1, c2, c3, c4, c5, ..., cm-2, cm-1, cm
Se continuarmos o processo de retirada, cada vez teremos 1 elemento a menos do que na fase anterior. Para retirar o p-ésimo elemento, restarão m-p+1 possibilidades de escolha.
Para saber o número total de arranjos possíveis de m elementos tomados p a p, basta multiplicar os números que aparecem na segunda coluna da tabela abaixo:

Retirada Número de possibilidades
1 m
2 m-1
3 m-2
... ...
p m-p+1
No.de arranjos m(m-1)(m-2)...(m-p+1)
Denotaremos o número de arranjos de m elementos tomados p a p, por A(m,p) e a expressão para seu cálculo será dada por:
A(m,p) = m(m-1)(m-2)...(m-p+1)
Exemplo: Consideremos as 5 vogais de nosso alfabeto. Quais e quantas são as possibilidades de dispor estas 5 vogais em grupos de 2 elementos diferentes? O conjunto solução é:
{AE,AI,AO,AU,EA,EI,EO,EU,IA,IE,
IO,IU,OA,OE,OI,OU,UA,UE,UI,UO}
A solução numérica é A(5,2)=5×4=20.
Exemplo: Consideremos as 5 vogais de nosso alfabeto. Quais e quantas são as possibilidades de dispor estas 5 vogais em grupos de 2 elementos (não necessariamente diferentes)?
Sugestão: Construir uma reta com as 5 vogais e outra reta paralela à anterior com as 5 vogais, usar a regra do produto para concluir que há 5x5=25 possibilidades.
O conjunto solução é:
{AA,AE,AI,AO,AU,EA,EE,EI,EO,EU,IA,IE,II,
IO,IU,OA,OE,OI,OO,OU,UA,UE,UI,UO,UU}
Exemplo: Quantas placas de carros podem existir no atual sistema brasileiro de trânsito que permite 3 letras iniciais e 4 algarismos no final?
XYZ-1234
Sugestão: Considere que existem 26 letras em nosso alfabeto que podem ser dispostas 3 a 3 e 10 algarismos que podem ser dispostos 4 a 4 e em seguida utilize a regra do produto.

Número de Permutações simples
Este é um caso particular de arranjo em que p=m. Para obter o número de permutações com m elementos distintos de um conjunto C, basta escolher os m elementos em uma determinada ordem. A tabela de arranjos com todas as linhas até a ordem p=m, permitirá obter o número de permutações de m elementos:
Retirada Número de possibilidades
1 m
2 m-1
... ...
p m-p+1
... ...
m-2 3
m-1 2
m 1
No.de permutações m(m-1)(m-2)...(m-p+1)...4.3.2.1
Denotaremos o número de permutações de m elementos, por P(m) e a expressão para seu cálculo será dada por:
P(m) = m(m-1)(m-2) ... (m-p+1) ... 3 . 2 . 1
Em função da forma como construímos o processo, podemos escrever:
A(m,m) = P(m)
Como o uso de permutações é muito intenso em Matemática e nas ciências em geral, costuma-se simplificar a permutação de m elementos e escrever simplesmente:
P(m) = m!
Este símbolo de exclamação posto junto ao número m é lido como: fatorial de m, onde m é um número natural.
Embora zero não seja um número natural no sentido que tenha tido origem nas coisas da natureza, procura-se dar sentido para a definição de fatorial de m de uma forma mais ampla, incluindo m=0 e para isto podemos escrever:
0!=1
Em contextos mais avançados, existe a função gama que generaliza o conceito de fatorial de um número real, excluindo os inteiros negativos e com estas informações pode-se demonstrar que 0!=1.
O fatorial de um número inteiro não negativo pode ser definido de uma forma recursiva através da função P=P(m) ou com o uso do sinal de exclamação:
(m+1)! = (m+1).m!, 0! = 1
Exemplo: De quantos modos podemos colocar juntos 3 livros A, B e C diferentes em uma estante? O número de arranjos é P(3)=6 e o conjunto solução é:
P={ABC,ACB,BAC,BCA,CAB,CBA}
Exemplo: Quantos anagramas são possíveis com as letras da palavra AMOR? O número de arranjos é P(4)=24 e o conjunto solução é:
P={AMOR,AMRO,AROM,ARMO,AORM,AOMR,MARO,MAOR,
MROA,MRAO,MORA,MOAR,OAMR,OARM,ORMA,ORAM,
OMAR,OMRA,RAMO,RAOM,RMOA,RMAO,ROAM,ROMA}

Número de Combinações simples
Seja C um conjunto com m elementos distintos. No estudo de arranjos, já vimos antes que é possível escolher p elementos de A, mas quando realizamos tais escolhas pode acontecer que duas coleções com p elementos tenham os mesmos elementos em ordens trocadas. Uma situação típica é a escolha de um casal (H,M). Quando se fala casal, não tem importância a ordem da posição (H,M) ou (M,H), assim não há a necessidade de escolher duas vezes as mesmas pessoas para formar o referido casal. Para evitar a repetição de elementos em grupos com a mesma quantidade p de elementos, introduziremos o conceito de combinação.
Diremos que uma coleção de p elementos de um conjunto C com m elementos é uma combinação de m elementos tomados p a p, se as coleções com p elementos não tem os mesmos elementos que já apareceram em outras coleções com o mesmo número p de elementos.
Aqui temos outra situação particular de arranjo, mas não pode acontecer a repetição do mesmo grupo de elementos em uma ordem diferente.
Isto significa que dentre todos os A(m,p) arranjos com p elementos, existem p! desses arranjos com os mesmos elementos, assim, para obter a combinação de m elementos tomados p a p, deveremos dividir o número A(m,p) por m! para obter apenas o número de arranjos que contem conjuntos distintos, ou seja:
C(m,p) = A(m,p) / p!
Como
A(m,p) = m.(m-1).(m-2)...(m-p+1)
então:
C(m,p) = [ m.(m-1).(m-2). ... .(m-p+1)] / p!
que pode ser reescrito
C(m,p)=[m.(m-1).(m-2)...(m-p+1)]/[(1.2.3.4....(p-1)p]
Multiplicando o numerador e o denominador desta fração por
(m-p)(m-p-1)(m-p-2)...3.2.1
que é o mesmo que multiplicar por (m-p)!, o numerador da fração ficará:
m.(m-1).(m-2).....(m-p+1)(m-p)(m-p-1)...3.2.1 = m!
e o denominador ficará:
p! (m-p)!
Assim, a expressão simplificada para a combinação de m elementos tomados p a p, será uma das seguintes:





FATORIAL

Aplicação
Os fatoriais são importantes em análise combinatória. Por exemplo, existem n! caminhos diferentes de arranjar n objetos distintos numa sequência. (Os arranjos são chamados permutações) E o número de opções que podem ser escolhidos é dado pelo coeficiente binomial. Veja também binômio de Newton.

Os fatoriais também aparecem em cálculo. Por exemplo, no teorema de Taylor, que expressa a função f(x) como uma série de série de potências em x. A razão principal é que o n derivativo de xn é n!. Os fatoriais também são usados extensamente na teoria da probabilidade.
Os fatoriais são também frequentemente utilizados como exemplos simplificados de recursividade, em ciência da computação, porque satisfazem as seguintes relações recursivas: (se n ≥ 1):
n! = n (n − 1)!
Definição

A função fatorial é normalmente definida por:

Por exemplo,

Note que esta definição implica em particular que

porque o produto vazio, isto é, o produto de nenhum número é 1. Deve-se prestar atenção neste valor pois este faz com que a função recursiva

funcione para n = 0.
A função fatorial também pode ser definida (inclusive para não-inteiros) através da função gama:

A sequência dos fatoriais (sequência A000142 na OEIS) para n = 0, 1, 2,... começa com:
1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800,...


Como calcular fatorial
O valor numérico de n! pode ser calculado por multiplicação repetida se n não for grande demais. É isto que as calculadoras fazem. O maior fatorial, que a maioria das calculadoras suportam é 69!, porque 70! > 10100.
Quando n é grande demais, n! pode ser calculado com uma boa precisão usando a aproximação de Stirling:

Esta é uma versão simplificada que pode ser provada usando a matemática básica do ensino secundário; a ferramenta essencial é a indução matemática. Esta é aqui apresentada na forma de um exercício:



Logaritmo de fatorial
O logaritmo de um fatorial pode ser usado para calcular o número de dígitos que a base de um fatorial irá ocupar. log n! pode ser facilmente calculado da seguinte forma:

Note que esta função, demonstrada graficamente, é quase linear para valores baixos; mas o fator cresce de maneira arbitrária, embora vagarosa. Por exemplo, este é o gráfico de seus primeiros 20 mil valores:
Uma boa aproximação para log n! é fazer o logaritmo da fórmula de Stirling.


Generalidades

A função gamma

A função gama Γ(z) é definida para todos os números complexos z exceto os inteiros não positivos (z = 0, −1, −2, −3, ...). Relaciona-se aos fatoriais pelo fato de que satisfaz um relacionamento recursivo similar àquele da função fatorial:


Junto com a definição Γ(1) = 1 isto gera a equação

Devido a este relacionamento, a função gama é frequentemente tida como uma generalização da função fatorial para o domínio dos números complexos. Isso é justificado pelas seguintes razões:
• Significado compartilhado — a definição canônica da função factorial é o relacionamento recursivo mencionado, compartilhado por ambos.
• Unicidade — a função gama é a única função que satisfaz o relacionamento recursivo mencionado para o domínio dos números complexos e é holomórfica e cuja restrição ao eixo positivo real é convexa no log. Ou seja, é a única função que poderia ser uma generalização da função fatorial.
• Contexto — a função gama é geralmente usada num contexto similar ao dos factoriais (mas, é claro, onde um domínio mais geral for de interesse).
Multifactoriais
Uma notação relacionada comum é o uso de múltiplos pontos de exclamação para simbolizar um multifactorial, o produto de inteiros em passos de dois (n!!), três (n!!!), ou mais.
n!! denota o factorial duplo de n e é definido recursivamente por

Por exemplo, 8!! = 2 • 4 • 6 • 8 = 384 e 9!! = 1 • 3 • 5 • 7 • 9 = 945. A sequência de factoriais duplos para n = 0, 1, 2,... é :1, 1, 2, 3, 8, 15, 48, 105, 384, 945, 3840, ...
Algumas identidades envolvendo factoriais duplos são:




Deve-se ser cuidadoso para não interpretar n!! como o factorial de n!, que deveria ser escrito (n!)! e é um número muito maior (para n>2).
O factorial duplo é a variante mais comumente usada, mas pode-se definir o factorial triplo do mesmo modo (n!!!) e assim por diante. Em geral, o k-ésimo factorial, notado por n!(k), é definido recursivamente como

Hiperfactoriais
Ocasionalmente o hiperfactorial de n é considerado. É escrito como H(n) e definido por

Para n = 1, 2, 3, 4,... os valores de H(n) são 1, 4, 108, 27648,...
A função hiperfactorial é similar à factorial, mas produz números maiores. A taxa de crescimento desta função, contudo, não é muito maior que um factorial regular.

Superfactoriais
Neil Sloane e Simon Plouffe definiram o superfactorial em 1995 como o produto dos primeiros n fatoriais. Assim, o superfatorial de 4 é

No geral,

A sequência de superfatoriais começa (de n=0) como:
1, 1, 2, 12, 288, 34560, 24883200, ... (sequência A000178 na OEIS)
Esta idéia pode ser facilmente estendida para superduperfatorial como o produto dos primeiros n superfactoriais (iniciando com n=0), assim
1, 1, 2, 24, 6912, 238878720, 5944066965504000, ... (sequência A055462 na OEIS)
e aí em diante, recursivamente para todos os fatoriais múltiplos, onde o m-factorial de n é o produto dos primeiros n (m-1)-factoriais, i.e.

onde mf(n,0) = n para n > 0 e mf(0,m) = 1.
Superfactoriais (definição alternativa)
Clifford Pickover, no seu livro Keys to Infinity, de 1995, define o superfactorial de n, escrito como n$ (o $ deveria, na verdade, ser um sinal de fatorial ! com um S sobreposto) como

onde a notação (4) denota o operador hyper4, ou usando a notação da seta de Knuth,

Esta sequência de superfatoriais começa:




Fatoração prima de fatoriais
A potência de p que ocorre na fatoração prima de n! é

Esta fórmula permite que fatoriais grandes sejam fatorados eficientemente.
O Teorema de Wilson diz que (p-1)! + 1 é um múltiplo de p se, e somente se, p for um número primo.
Exemplos de fatorial

Exemplo 1

3! = 3 * 2 * 1 = 6
4! = 4 * 3 * 2 * 1 = 24
5! = 5 * 4 * 3 * 2 * 1 = 120
6! = 6 * 5 * 4 * 3 * 2 * 1 = 720
7! = 7 * 6 * 5 * 4 * 3 * 2 * 1 = 5040
8! = 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = 40 320
9! = 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = 362 880
10! = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = 3 628 800


Alguns cálculos envolvendo fatorial exigem algumas técnicas de simplificação e fatoração. Observe as demonstrações a seguir:

Exemplo 2

Vamos calcular o valor de 12! / 8! . Nesse caso, se desenvolvermos os fatoriais dos números e depois efetuarmos a divisão, o método de resolução estará correto. Mas essa forma de resolução pode se tornar complexa para números elevados, por isso devemos desenvolver o fatorial do maior número até chegarmos ao fatorial do menor número, simplificando os fatoriais semelhantes. Observe:


Exemplo 3

Outra forma de resolução de fatoriais é quando ocorre a soma de fatoriais. Nesse caso podemos utilizar a fatoração por evidência. Observe:

Exemplo 4

Outras situações exigem técnicas de desenvolvimento dos fatoriais para que simplificações sejam efetuadas. Veja:


n² + 2n + 3n + 6
n² + 5n +6


Exemplo 5

O fatorial de um número também está associado a equações. Observe os cálculos:

Solução = {4}


Exemplo 6

n2 – n = 42
n2 – n – 42 = 0

Desenvolvendo a equação do 2º grau temos:

n’ = 7 e n” = – 6

n = – 6 não convém, pois fatorial só é aplicado a números naturais. Portanto, S = {7}.

FATORIAL NO DIA - A - DIA

Na matemática o Fatorial de um número natural (n) é o produto de todos os inteiros positivos menores ou iguais a (n). Podemos representar o fatorial pelo símbolo n! que é lido como “fatorial de n”. Esta notação foi usada a primeira vez por Christian Kramp em 1808.
Acredito que grande parte dos estudantes aprende a definição de fatorial desta forma, mais vamos em frente.
Qual seria o Fatorial do número 5?
Usando a notação de Christian teríamos
O fatorial é muito usado...
Digamos que você tem um saco escuro (de tecido, Ok), e dentro deste saco você coloque 3 bolas: uma vermelha (VM), uma branca (BR) e uma amarela (AM). Agora aleatoriamente você tira uma a uma e anota a sequência, quantas sequências de bolas possíveis você poderia tirar deste saco?
1. VM – BR – AM
2. VM – AM – BR
3. BR – AM – VM
4. BR – VM – AM
5. AM – VM – BR
6. AM – BR – VM
Fácil não, mais se agora eu coloca-se mais uma bola, da cor Cinza? Desta vez são quatro bolas, qual seria a sequência?
Concordam que seria pouco prático tentar resolver esta conta desta forma, fazendo listinhas. É ai que entra o Fatorial, vamos ver o primeiro exemplo:

3 bolas – 3 cores fatorial = Fatorial n = n * (n-1) ou n! = n*(n-1)

3! = 3 x 2 x 1 = 6

Legal, chegamos a quantidade de possibilidades do exemplo 01, mais rápido e prático. E com quatro bolas, qual seria a possibilidade:

4! = 4 x 3 x 2 x 1 = 24

Vejam que uma única bola quadruplicou o resultado, temos agora 24 possibilidade. E se agora fossem 6 bolas?

6! = 6 x 5 x 4 x 3 x 2 x 1 = 720
Com seis bolas precisaríamos de um dia inteiro para escrever as possibilidades na forma de listas.
Onde mais podemos usar fatorial no dia a dia:
• em estatísticas;
• em jogos de carta, probabilidades;
• em jogos como loteria;
• em química
• em qualquer tipo de sorteio ou seleção;
• e em uma lista interminável de coisas.
Veja, que um exemplo simples das “bolas no saco” , resolveriam o entendimento do fatorial.

EXERCICIOS

Brinde: http://pessoal.sercomtel.com.br/matematica/conline/fatorial/fatorial.htm





31) (x+3)! + (x+2)! = 8(x+1)!




Nenhum comentário:

Postar um comentário